Final Remarks MAM 2016

Volker Saile

February 2, 2016
Exhibitors
MAM 2016, 7th Edition

Same Concept, Same Venue, Same Quality
mAm 2010 – the first mAm
mAm 2015
mAm 2016 – the days before in the webcam

http://villars.roundshot.com/bretaye/
Sunday, January 21, 2016

It's a workshop and not a skiing excursion!
mAm 2016 is organised by Micronarc, in collaboration with Mancef.

Organising Committee

- Edward Byrne – Micronarc; Project Manager FSRM
- Prof. Dr. Volker Saile – Chief Science Officer, Karlsruhe Institute of Technology; President, Mancef
- David Tolfree – Vice President Africa/Europe, Mancef
- Danick Bionda, Secretary General, Micronarc
- Philippe Fischer – Director, FSRM (Swiss Foundation for Research in Microtechnology); General Advisory Board Mancef Africa/Europe
- Dr. Sikha Ray – KIT, Programme management STN
- Suzanne Schwendener – Micronarc
The Concept

Background

Microsystems have now entered the age of high volume production for consumer applications, especially mobile phones, ICT and medical disposable devices. The issues associated with the production of these are of continued interest to manufacturers. These include tooling in high volume fabrication of precision parts, making highly efficient and reliable automated assembly lines and test systems for microproducts. There is a fast growing market for such components and products.
The Program
Monday 1 February 2016

9:00 - 09:30 Welcome

Danick Bionda, Secretary General, Micronarc

Prof. Dr. Volker Saile, Karlsruhe Institute of Technology, President, Mancef

David Tolfree, Vice President – Europe, Mancef

Christine Reiley, ASME / COMS 2016

Yvan Dénéréaz, Office for Economic Affairs, Canton of Vaud
Invited Keynote on the Future of Micro-manufacturing I

Chair: Prof. Volker Saile, Mancef; KIT

Prof. Richard Leach, Professor in Metrology, Faculty of Engineering, The University of Nottingham (UK)

Next generation optical micro-metrology: beating the current barriers

Why Nottingham?
Interests in Micromanufacturing and Additive Manufacturing
Surface measurements: spatial frequencies
Why optical and not contact? Optical instruments
Imaging compromises
Information rich metrologies (IRM)

Special problem: High slopes
Difference Engines

Current research:
Develop new all optical CMM platform
50 mm³ and sub-µm capability
Focus and interferometry variation
IRM principles
Self-calibration
It is never too late to start over!
10:30 - 12:15 Micro-manufacturing Applications I – Watchmaking

Chair: Philippe Fischer, FSRM

Keynote: Dr. Jens Kraus, VP, Systems, CSEM (Switzerland)

Enabling micro-technologies for smartwatches: low-power, embedded, connected

Smart watches
Connected watches
Market: 15-28 M/a

Enabling technologies @ CSEM:
MEMS, MOEMS
Ultra-low power
Photovoltaics
Human vital sign sensing and processing

Swiss smart watches
Energy consumption
Killer App?
Future thoughts
Dr. Rainer Kling, Business Unit Manager / Laser Micromachining, AlphaNov (France)

Femtosecond lasers for ultra-precision watchmaking applications

AlphaNov organization

fs-Lasers: advantages
Non-linear absorption

Sapphire: properties

Holes and deep engraving
Improving ablation quality
Bottom-up ablation

Process window: <2° taper

Laser-drilling strategies: Trepnanning drilling, geometry control
High AR > 10

Decoration: holographic effects, hydrophobic surfaces, coin making
Dr. Csaba Laurenczy, Haute-École Arc, Lab. d'ingénierie horlogère (Switzerland)

Functionality and attribute driven process control and quality inspection for watch production

Press fittings: up to 80 per watch > production problems

Attribute driven process control: Client needs-functionality of assembly-
-set of process attributes-assembly functionality check-
-set of component attributes-component functionality check-
-client needs
Silvio Dalla Piazza, Vice President Research & Development, Micro Crystal AG [Swatch Group] (Switzerland)

Quartz Tuning Forks: A high-volume, low-cost, high-tech MEMS product

Quartz: Tuning forks = first MEMS
Today: miniaturized ceramic packaged quartz resonator
Photolithography-wet chemical etching
Frequency adjustment by laser trimming
Types of resonators, 32.768 kHz for watches and smartphones
New geometry with grooves (Q-factor!)
T-compensation and aging
Small: 1.6x1 mm, 2B pieces/a, critical parameter is market price (6 C/ piece !!!)
13:30 - 15:00 Micro-manufacturing Applications II – Medtech

Chair: Pierre-André Grandchamp, FSRM

Keynote: Dr. John T. McDevitt, Chair, Department Biomaterials, New York University College of Dentistry, Bioengineering Institute (USA)

Development of the Programmable Bio-Nano-Chip: Bridging the Gaps in Micro-Manufacturing for A New Class of Medical Devices

Books, health market, missing link: biomarker information
Strategic focus: technical advantage, societal need, passion – flywheel effect
Senso DX: Platform to digitize biology, sensor that learns, empower people
Platform, barriers, pathway to analyzer, failure of current LOC for POC, **New content!**
Consumer cardiac ScoreCard, adaptive clinical trials
Soft product launch SensoDX in January 2016
Internet of Biomarkers (IoB)
Dr. Ben Whiteside, Director – RKT Centre for Polymer MNT, University of Bradford (United Kingdom)

Microinjection moulding for microneedle drug delivery devices

RKT Centre for polymer micro- and nano-technology

„Organizing Molecules“

Micro-needles case study

- High shear rheometry
- IR shear heating measurements
- Design and simulation
- Hollow micro-needles
- Process analytics

AFM, polymer morphology, analysis techniques, 3D confocal microscopy

Plasma treatment – contact angle
Dr. Vincent Dessenne, General Manager, Heraeus Materials SA (Switzerland)

Innovative cermet ceramic composites for miniaturized medical applications

Miniature feedthroughs for implants

Example pacemakers: downsizing 1958-2013

Current technology is very complex

CerMet ceramic and conductor
Network of conductive material (Pt)
Absence of macroscopic interface
Strength, conductivity, leak-tight

Improvement: Polishing, slow cooling

Stacking: 3D designs

Laser welding
Exhibitor elevator pitch (3 min) – FEMTOprint

Glass. Rapid prototyping w/o cleanroom
15:30 - 17:30 MEMS

Chair: Dr. Sebastian Gautsch, EPFL

Keynote: Benedetto Vigna, Executive Vice President, General Manager, Analog, MEMS & Sensors Group, ST Microelectronics (Italy/Switzerland)

Sensors and..... actuators
10 years of sensors at ST
Start: Nintendo and iPhone
10 B MEMS shipped
Erosion of price

Power consumption
Image stabilization: Cameras and drones
Wearables, automotive is stable
Very small pressure sensors: accuracy – 10 Pa equiv. 80 cm
UV sensors, humidity sensors
Microphones: the only MEMS growing

Smart things for augmented life
Low power blue-tooth (IoT needs radio!)

Lowering the barriers for developers; STM32 open development environment

Sensing and actuating: gap in actuator development; Real Sense with INTEL
Sensors shrink – actuators don’t. Piezo, thermal, electro-static, electro-magnetic

Micro-mirrors for scanning in notebooks (LENOVO YOGA15)

ST is the only company to offer the full range of actuators and IoT devices

Today: inflection point – IoT or actuators, MEMS not anymore new, get out of smartphone
Dr. Thomas Overstolz, Senior R&D Engineer, CSEM (Switzerland)

A MEMS-based miniaturized atomic clock

Applications: wireless base station, GPS, test&measurement....
Two prototypes
Basic principle: Swiss-MAC. CSEM. Complete system

Alkali vapor cell (Rb), integrated functionalities
Problems with Rb: quantity? In-situ Raman spectroscopy > Rb diffuses into glass
MVD coating solves problem
Lifetime is now 15 years
Dr. Christophe Gorecki, Directeur de Recherche CNRS, Institut FEMTO-ST (France)

Miniature Mirau interferometry for swept-source OCT imaging with applications to cancer diagnosis

Miniature microscopes for auto-diagnosis
Optical coherence tomography (OCT)
Skin cancer

VIAMOS Consortium – 7 partners
MOEMS based instrument
Architecture

Demonstrators for building blocks
Doublet of 4x4 microlens arrays
Beamsplitter
Z-scanner

Assembly and characterization
Prof. Dr.-Ing. Helmut F. Schlaak, Technische Universität Darmstadt (Germany)

Micro Nano Integration - Iontrack Template Technology for Future MEMS

Nanowires, nanotubes, nanorods
Bottom-up fabrication
Ion-track etching
Prefabricated foils, no expensive equipment
Laminate ion-etched foils, adhesive layer
Solvent-enhanced lamination
Electroplating

Properties: 100 nm to 1.5 µm, 100µm long
Electrical connections
Applications: many (see photo)
Taylororing of the needles
Upscaling and commercialization
Exhibitor elevator pitch (3 min) – Lyncée Tec

SAW, US-transducer in liquid, EPFL ROLEX Center - Evaporation of the building replica
Excellent!!!
Microtechnologies are fine, but...
...sometimes not the best solution
08:30-10:00 **Novel Manufacturing I - Energy Harvesting**

Chair: Dr. Christine Neuy, microTEC Südwest

Keynote: Prof. Adrian Ionescu, EPFL / NANOLAB (Switzerland)

Energy harvesting and storage for smart autonomous systems

- Wearables and IoT
- Energy scavenging: Light, vibration, motion
- Energy storage
- Nano Era, size of transistors, 3D, 14 nm transistors
- Trillions of sensors? Abundance
- EU Zero-Power technology
- Autonomous smart systems
- Energy for elementary functions
- Wearable technology
- Key enabling technologies
Si technology: a 3D migration to the future. Self powered chips?

Solar, thermal, vibration, RF for harvesting
Mechanisms for energy harvesting
Micropower energy harvesting: Solid-State Electronics 53(2009), 684-693

Scenario 1: harvesting
Scenario 2: harvesting and storage combined

Energy: majority goes into radio
Scavenging: system level problem

Light: low efficiency at low lux – solutions such as photon recycling
Vibrations: mass!
Human energy: activities. Where to tap the power? Shoes?
Piezoelectric conversion/harvesting: PVDF on wafer, low T
Thermoelectric (TEG): nanomaterials, performance factors, SEIKO watch, on foil harvester material, package, system
Hot ICs

Storage: Li-ion battery, supercapacitors – advantages/disadvantages, Graphene

Roadmap
Prof. Dr. Uli Lemmer, KIT / Light Technology Institute (LTI) and Institute of Microstructure technology (IMT), (Germany)

Fully printed thermoelectric generators

OTEGO

Basics of TE-modules
Materials: high el. cond. and low thermal con.
Figure of merit
Conventional vs. non-conventional materials

Conventional materials: expensive, toxic
Organic: printing, PEDOT, commercially available
Efficiency development: impressive
Controlled doping PEDOT:TOS

Market, business: mW/cm²
Smart home applications
Trillion of sensors in industry
Large area heat recovery

InnovationLab: Roll-to-Roll printing
Screen printing: PDOT:PSS/Ag-Paste
Folding and wrapping thick TEGs
Dr. Simone Marasso, Chilab, Materials and Microsystems Laboratory, Department of Applied Science and Technology (DISAT), Politecnico di Torino (Italy)

3D flexible micro-supercapacitors

Supercapacitors: bursts of energy, low energy density
Comparison with battery
Technological challenges

Graphene properties
Solution: graphene oxide
Then reduction of GO
Loading with metal oxide particles
Very high surface area

Fabrication: LIGA-like, high AR
Silicon master
3D flexible µsupercapacitors
Loading of µstructure
Characterization 10mF/cm²
IcoFlex - Presentation

- In Business since 2004
 - Located in Lausanne / EPFL Innovation Park
 - Access to EPFL clean rooms, collaborations with different EPFL researchers
- Microfabrication, glass/ceramic products:
 - Powder blasting, laser machining, metal deposition and structuring
 - Gallium filling of structures (Au-TiZn, Through Glass Vias - gold filling)
- Servicing / subcontracting company
 - R&D platform
- NEW 2016: Metrology device for watchmakers
 - GyroTracker

Internet device forecast: mostly wrong
But...smart TV, wearables (?)
Smart world – INTEL
IoT Hypecycle (Gartner 2014)
Autonomous cars

IoT applications and sensors
From OLED and OPV to Sensors
Consumer and industrial applications
Smart homes: will come
Bio-degradable electronics (KIT-Forbes, 9-2015)

Hybrid wireless sensor node – printing/Si

INNOVATONLab: Printed organic electronics
Sensors!
Mass production, labels...
CHEAP

Printing stages 1, 2 and 3 –
Examples:
TEG
Replace ITO – Touch screen applications
Printed force sensor – piezoresistive – medical
LOC printed, diapers-sensors: delivery!
Disposable pressure sensor: Decubitus
Dr. Giovanni Nisato, Business and technology development senior manager CSEM Basel (Switzerland)

CSEM submicron printable technologies

Macro trends: additive manufacturing
ITC/life sciences...

Printable electronics 5-500 k$/m² to <1 $/m²
Complementary to Silicon
Feature sizes – dimensions

Device examples, R&D flows
Gravure printing: mature industry,
fixed pattern, >10 µm

Workflow toward design kit
Gravure printed diode-connected inverter

CSEM: Surface engineering, PV
Hybrid int., design, modelling, testing, PV
Sub-micron: re-tooling from optics
CSEM submicron OTFT building blocks
Submicron OTFT – simulations at CSEM

Gravure 30 microns pitch

USP: value for basic functions

Towards submicron
History of ink jet printing

No cleanrooms, not high volume

Electroplated structures: thin – receiver coils
Thickness limited

Self-rolled structures in a tube
PDMS µ-tubes
Diameters: wide range

µ-NMR receivers: rolling on glass tube
Fancy structures inside tubes

Broke man‘s LIGA
Electroplate inside trench
Printed Track used as shadow mask
Wafer scale

Electrifying Lab on a Disk
Prototypes
Putting detection and intelligence on disk
Energy supply
Exhibitor elevator pitch (3 min) - microTEC Südwest

380 members – special interest groups: printing, smart health, industry 4.0...
13:30 - 15:00 **Novel Manufacturing III - Assembly and Laser Methods**

Chair: Danick Bionda, Micronarc

Keynote: Prof. Yves Bellouard, Galatea Lab, Richemont Chair in Micromanufacturing, EPFL (Switzerland)

Femtosecond laser processing of dielectrics: a micro-manufacturing platform for single-material multifunctional microsystems

Microcity

One material – one function

How about 3-D structures?

Increasing number of functionalities

Monolithic integration: example optical bench, one piece of glass, micro-gripper

Modify material properties locally at will:

Non-linear absorption – pulsed lasers
Applications with fused Silica

Local increase of refractive index
Waveguides, gratings...

Waveguides+channels, optomechanics, 3D, flexures in glass, waveguides+flexures, Transparent actuators, dielectrophoresis devices, cantilevers for laser- matter interactions, polarization and stress (Gpa!)

Mechanical properties of glass

Packaging of optics: positioning by laser

Laser morphing: surface tension (spheres)
Prof. Dr. Klaus-Dieter Lang, Director, Fraunhofer Institute for Reliability and Microintegration IZM (Germany)

Advanced Assembly and Integration Technologies for Miniaturized Electronic Systems

Wafer level – panel level integration
System integration - driving forces
Design, Technology, Reliability

Every application requires...

Interface to digital world, human-machine interface

ASTROSE – wireless sensor node
Power line - capacitive harvester
Sensor systems and electronics
Requirements on integration
Device integration:

Example - Apple A5 processor
Interconnect resolution trend

Fan out, embedded die, thru silicon via

Wafer level – Panel level: Size!

Interconnects: size scaling
3d-integration: cleanroom conditions

Panel level – PCB technology

Combine wafer level and PCB

Example: Camera – Who makes Decisions?
Prof. Dr. Boris N. Chichkov, Leibniz Universität Hannover and Laser Zentrum Hannover e.V. Head of the Nanotechnology Department (Germany)

3D laser nanoengineering and printing of nanoparticles

Generation of nanoparticles: Au (ablation)
Electrophoretic coatings

Two photon absorption
Photonic crystals, interconnects, super-strong materials
Tissue engineering: scaffolds, also from fibrin
3D conductive polymers
Splitting of beams

Laser printing of nanoparticles (Au), catch droplets, also as antennae

Huge arrays of nanoparticles

Printing of Si particles
Mie theory
Amorphous phase – unstable
Non-radiating particles
Optics with nanoparticles
Additive manufacturing:
Laser-melting: 100 µm to 1 µm
Print on top on each other AR = 40

Stem cells can be differentiated within the printed pattern
Invited Keynote on the Future of Micro-manufacturing II
Prof. Dr. Andreas Manz, Head of Research, KIST Europe Forschungsgesellschaft mbH (Germany)
» European Inventor Award 2015 for lifetime achievement

Beyond Microfluidics, biomimetics or self-assembly?

LOC achievements
No killer apps yet

Early devices
3D manifold
Older videos

Substrates mostly glass to glass
Integrated features mostly nothing
Topology of channels
Interfacing: It is a chip in a lab
Application areas
Commercialization
Best commercial case: Caliper
New horizons?

more of the same?
early patents expired
new materials? Paper!
new fields? Stem cell biology, organ on a chip, wearables technologies? Droplets in oil!
Droplets on surface!
Large scale int. of valves?
Nano scale? Single molecules?
Capillary forces and phase gates
Feed cells by phase gates (MIMETAS company)
3d liver cells – metabolism – chip is the best
Canaliculi formation – chip is the best

Microfluidic networks: biological channels:
 no constant cross section, not smooth
Biomimetic networks: leaf > copy in PDMS > glass
Microfluidics: filling the structure
No straight lines. Put cells into it. Melanoma cells

Self assembly
Flies are self-assembled! Mechanical structures?
Si-cubes in paramagnetic fluid and magnetic field
Diffusion and Brownian motion, combinatorial problem
Externally propelled, self propelled
Magnetotactic bacteria:
Self propelled with external steering
Capillary forces: logic, four parts of self assembly
Fabricated SU-8 tripods > Project cancelled
Soap bubbles – helices from soap, ion track channels
16:15 - 16:30 Final Remarks

Prof. Dr. Volker Saile, Karlsruhe Institute of Technology (Germany), President, Mancef

Danick Bionda, Secretary General, Micronarc
Thanks
Thanks
COMMERCIALIZE emerging technologies.
CREATE global solutions.
TRANSFORM lives.

With the World Health Organization identifying growing pressures facing the projected 9 billion world inhabitants by 2050, it is more important than ever to leverage emerging technologies that create sustainable solutions for these global challenges.

COMS 2016 convenes international leaders, entrepreneurs, researchers and investors to focus on commercializing emerging technologies in logistics and sensors, aerospace, health and energy. Join us in Houston as we commercialize, create and transform.
SEE YOU AT MAM 2017

VILLAR-SUR-OLLON

JANUARY XX – FEBRUARY XX, 2017