

Final Remarks mAm 2014

Volker Saile

Villar-sur-Ollon, January 21, 2014

Monday 20 January 2014

09:00-09:20 **Welcome Session**

Edward Byrne, Micronarc
Prof. Dr. Volker Saile, Karlsruhe Institute of Technology, President MANCEF
Yvan Dénéréaz, Office for Economic Affairs, Canton of Vaud

80 Participants at mAm 2014

Canton of Vaud, watch-valley Impressive research and industrial strength area, micronarc

Patrick Barbey, Director, Innovaud

Innovaud: new agency for innovation, one stop shop,

Members: seven innovation parks

Supporting connection industry- academia new tools: support of start-

ups, and also SME

Examples - Swissto12 (THz)

09:20-10:00 Invited Keynote on Micro-manufacturing

Andrea Onetti, General Manager of Analog and Audio Systems Division, **STMicroelectronics** *Smart Microsystems for Internet Of Things*

Humanization of Technology

Human interface technology - wearable technology -contextual technology -internet of things: IoT = Smart System + @ Package technology – size, power consumption

Enabling factors: silicon - smaller (Moore, more than Moore), new materials, packaging, IPs&Software

Challenges: technology, society (privacy, security, environmental impact, safety, social responsibility)

MEMS for personal weather forecast, indoor navigation (Tokyo Station) ST - 1B\$sales in MEMS, 4-5 M units per day, 7B total Coming: microactuation, mirror systems, smaller systems

10:30-12:00 Micro-manufacturing Applications I – Watchmaking

Keynote: **Prof. Dr. Simon Henein**, Micromechanical and Horological Design Laboratory (INSTANT-LAB), **EP FL** (Switzerland) *Instant-Lab: EPFL's new micromechanical and horological design laboratory*

INSTANT-LAB, Patek Philippe Chair

Flextures, store energy, guide energy - bearings, 1cm scale - EDM, robots

Watchmaking: time bases, escapements, novel materials and technology, high quality factor oscillators, new kinematic concepts, pivotless designs escapements with flexture technology - very few parts non-linear springs

Surgical protheses: intelligent insert for knee Teaching - emphasis on design

HOROLOGY

Denis Jeannerat, Director of Technology, **Willemin-Macodel** (Switzerland) A huge step towards the submicron

New concept of machine tool for submicron accuracy

Small machine, 1m² footprint

Machine design - delta architecture - platform, low mass in platform leads to high speed - 80000 rpm, no tool holder (shrinking)

High natural frequencies and dynamic behavior very fast - lower number of tools, thermal stability

2.1 kW = ten time less than classical machine, no cooling required Reduction of time - factor 8

Dr. Joachim Schulz, CEO, **microworks GmbH** (DE)

X-Ray LIGA: a new mainstream appeal

Why X-ray lithography: diffraction, sub-micron precision, large depth, inclined structures

New appeal: just three people, new resist mr-x, new mask technology 100 mm layouts, standard prices

Products/applications: watches, apertures, optical resonators and filters, gratings

Exhibitor elevator pitch (3 min) - MicroTec Südwest

13:30-15:30 Micro-manufacturing Applications II – Medtech

Keynote: Prof. Dr.-Ing. Roland Zengerle, Laboratory for MEMS Applications IMTEK - Department of Microsystems Engineering, University of Freiburg *Microfluidic Platforms, Microfluidic Apps and Microfluidic Foundry Services*

Platforms - Apps - Designs

Microfluidics is an enabling technology

Point of care applications

System integration challenge

Microfluidic platforms, centrifugal microfluidics

Examples: pathogen detection from raw blood, enrichment of bacteria in water

Functional package of reagents: blisters with micro channels

Profit for customers: run on existing instruments – example: Quiagen instrument Rotorgene, new platform for standard centrifuge

Pascal Carpentier, Sr Business and Solutions Delivery Manager, **NayaMed International Sàrl** (Switzerland)

Hospital Management, towards Remote Technical Support

Business model: remote technical support, hospital management Provide technical expertise on implant, use and operation - pacemaker has 300 parameters

Traditional: travel based systems – cost high, efficiency low Replace traditional system by web-based support

Frederic Neftel, MD, President & CEO, **Debiotech** (Switzerland) *MEMS = MC2: Miniaturization, Convenience and Communication; a*breakthrough perspective in Diabetes Care.

Diabetes – insuline pump and glucose sensor

JewelPUMP - MEMS pump, close collaboration with ST, 400 pumps per wafer

200 nl per stroke, pizoelectric, long term reliabiltiy (Si), delivery within +-5%

Safety: sensor inside the pump -occlusion alarm

Convenience for patient: thin and small, remote control, app for special mobile phone

Next step: development of closed loop system - artificial pancreas

Jim Ohneck, Chief Marketing Officer, Valtronic (Switzerland) The impact of miniaturization on personal medical devices

Miniaturization – Healthcare

Healthcare cost – see US video

Personal Healthcare Devices (PHD): classical proven technologies, reliability

Future: phone - cloud, contact lens: pressure, pulmonary artery sensor for pressure, wireless hermetic glass seal

Exhibitor elevator pitch (3 min) - Fine Polish TDC

16:00-17:30 **MEMS**

Keynote: Prof. Dr.-Ing. Helmut F. Schlaak, Laboratory Microtechnology and Electromechanical Systems - Institute of Electromechanical Design - Department of Electrical Engineering and Information Technology - Technische Universität Darmstadt 3D Micro-Nano fabrication for a new generation of low-cost microsystems

Silicon micromachining vs polymer-metallic micromachining
Micro-actuators - in-plane movement, out-of-plane movement
3D MEMS, substrates, DUV lithography: SU-8, HAR electroplating, milling
Bistable electrothermal relay - normally-closed electrostatic relay (out-ofplane) 1D-elements in the vertical: UV-Liga, X-ray LIGA, IT LIGA
(lon Track)

One-wire acceleration sensor

Nanowires -bottom up approach, ion tracks 50+ nm, mushroom structures, bridges

Calorimetric sensors, acceleration sensors

Dr. Michel Despont, Manager MEMS Products, **CSEM** (Switzerland) *MEMS*, enabler in product innovation

Watches, micro-mirrors, soft-MEMS, gratings

MEMS: 10B Market, fragmented, also for small companies, customized technologies

Large added values

CSEM most on watch parts, sensors, X-ray sources and detectors

Patek Philippe examples, Si and Si+Gold (inertia), escapement, 2cm part

Miniature atomic clock

Micromirrors fo harsh environment, large powers load

Soft MEMS: tactile graphical Braille display, stroke 500 microns, pneumatic actuation, PDMS, EU project

X-ray scatter gratings - non-destructive testing, phase contrast imaging

Dr. Kilian Bilger, Director Microsystem Technologies - Corporate Research at **Robert Bosch GmbH** (Germany)

Challenges and trends in Microsystem Technology

Automotive in Reutlingen, Bosch Sensortec, Akustika, Bosch Connected Devices and Solutions (from sensors to solutions)

Last year 3B sensor level, MEMS pioneer, 1000 patents

Markets: growth rates 10%, automotive, still growth, consumer and

mobile: tremendous growth

Technology: Bosch process, sacrificial layers, ...porous thin film technology

Success factors: high integration via system on chip, MEMS packaging

Chip scale packages, 1.2x1.5 mm² footprint

Three success factors: speed and flexibility (1) – combos, functional integration and software (2) - human-machine interface (3)

Exhibitor elevator pitch (3 min) - Lyncée Tec

Tuesday 21 January 2014

08:30-10:00 Assembly and Automation

Keynote: Dr. Marcel Tichem, Dept. of Precision and Microsystems Engineering, Delft University of Technology (The Netherlands)

Self-assembling and self-adjusting micro-assembly processes

Assembly in the small domain

Self assembly of ultrathin chips (UTC) - for packages, smart blisters for therapy compliance, assembly challenge

Self assembly, examples from the academic domain, solution for UTC, Chip2Foil, magnetic force (Ni on chip), adaptive connection

Self adjustment of photonic components

Active alignement using MEMS

Chip-to-Chip passive alignement, interposer chip, passive alignement features in litho step, final solution: combination of passive and active alignement

Nano-scale assembly and pattering: discrete pattern of nanoparticles by dielectrophoresis

Nanomanufacturing yet to be developed

Lukas Schädler, SLS Detector Group, **Paul Scherrer Institute** (Switzerland) *Micro assembly of X-ray hybrid pixel detectors*

Applications at SLS: protein crystallography, ptychography

Detector portfolio: single photon and charge integrating, strip-detectors and pixel detectors

Bonding process: FEMTO machine for placing, alignement, bonding

Pixel sizes: new Mönch detector - 25 micrometer, also larger gap-less

modules

Prof. Dr.-Ing. Dominik Rabus, Portfolio Managt., Bürkert Fluid Control Systems (Germany) *Optofluidic System Technology*

Bürkert: system integration company

Optofluidic systems: flipper valve for dosing, rocker valve for media separation, membrane pumps, pneumatic dosing

Applications: fluid control systems, optofluidic control system, microfludic board including syringe pumps

Book on optofluidics to be published in September by de Gruyter

Exhibitor elevator pitch (3 min) - IcoFlex Exhibitor elevator pitch (3 min) - KNMF

10:30-12:00 Novel Manufacturing Technologies I

Keynote: Dr. Ralf Mauer, Business Development, **InnovationLab** GmbH (Germany) *Liquid processing in Organic Electronics*

Materials, equipment, processes, applications

OLEDs, OPV, printed sensors, flexible logic

Vacuum technology (subtractive technology) - towards liquid processing, printing

InnovationLab: open access, partners, cluster partners: 30

Printing equipment

Materials: cynora GmbH - copper based materials, BASF replacement for silver ink

Equipment: spin-off from TU Darmstadt, fast 5 m/s, registration 4 micrometer, also Heidelberg machine

Processes: flexibel battery tester with OLED devices, thermal power generator by KIT

Developing applications: COLAE EU-project, standardization, end-user involvement

Dr. Giovanni Nisato, Business and technology development senior manager, **CSEM** (Switz.) *Printable electronics at CSEM*

CSEM - non-profit, not production company, not university, but enabler, risk reduction

MEMS, surface engineering, systems, ultra-low power

Printable electronics - complicated field, different from Si-electronics

Cost per unit vs units produced (includes also Moore's law)

Competence plot for Switzerland - physically in Basel

Coating and printing techniques are available

Printable circuits, printable lighting, printable sensors (are reality - glucose)

Components and metrology, printable PV - EU projects and activities

Michiel de Bruijcker, Managing Director, Formatec Technical Ceramics BV (The Netherlands)

Additive manufacturing of full functional ceramic components

Printing functional components: ceramics and additive manufacturing High complex ceramic components

Printing technology project at FORMATEC: joint project with partners Material-printing-process

Powder+photosensitive resin, expose, de-binding and sintering, shrinkage approximately 20%

ADMAFLEX - Additive Manufacturing Technologies - new company Examples, customers

Roadmap: ceramics, building size, metals

Exhibitor elevator pitch (3 min) - Microtechnics Alliance Exhibitor elevator pitch (3 min) - Euris / Tousimis

13:30-15:00 Novel Manufacturing Technologies II

Juan Franco, Eichenberger AG (Switzerland)

Additive Manufacturing: a view into the future

Future of additive manufacturing, layer-by-layer

Stark Trek 35 years ago - today we can teleport objects.

Laser sintering, fused deposition modelling, stereolithography, selective lasermelting

Selective lasermelting at Eichenberger

Gold chain layer-by-layer from gold powder, alloys, precious metals

Development of powders, grain size

Advantages: no clamping systems or supports, no special programming, no delivery time for tools, very short delivery times, integration of functions in one production stage, liberty of design, small quantity of metal needed, cost independent of complexity, CNC is cheaper, but only if you have time and the design allows for CNC

Vision: future after sale service - only file for part needed

Build part near customer's place. Act global - produce local

Governments are investing

To come: special alloys, spare parts logistic

Consumer goods: mass production will decrease

Enric Sirera, Sales Director at Ultrasion (Spain) Ultrasonics in Micro Molding

Ultrasonic molding

New technology - new opportunities

Molded plastic parts

Machines: principle stayed the same since along time.

Micro injection molding machines since 1995

New: 2010 ultrasonic molding machine for melting

Pressure, volume of raw material, material degradation, go green!

Pellets, ultrasound, injection, material is not pre-heated

Opportunities: dental tip, cap with filter - ear protection, contact holder -

hearing aid device, eye retina surgery tip,...

Exhibitor elevator pitch (3 min) - Femto Engineering Exhibitor elevator pitch (3 min) - Finetech / Pontago

15:30-16:15 **Invited Keynote on the Future of Micromanufacturing**

Dr. A. Frank de Jong, Director, Technology Partnerships, **FEI Company** (The Netherlands) *Electron and ion beam tools supporting nanotechnology*

FEI – Eindhoven (NL, Hillsboro (US), CZ

Semiconductor industry, oil and gas, life science, science

Financials: 12% CAGR

Workflow solutions: electronics, natural resources, materials

From resolution to contrast improvements: sub-A resolution, 3D, also for

SEM, also detector side, 3D SEM

Analytical results: new X-ray detector- sees even As dopants

Nano-prototyping: E-beam induced deposition – conductance of Pt lines, combination with ALD, direct-write ALD, contacting graphene,

in-situ Raman for graphene, Fe-pillars (spintronic)

16:15-16:30 Final Remarks

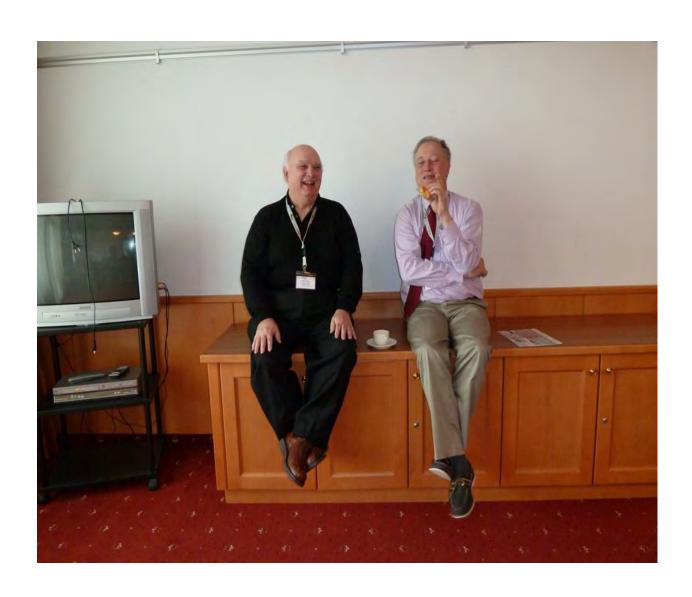
Prof. Dr. Volker Saile, Chief Science Officer, **Karlsruhe Institute of Technology** (Germany) **President, Mancef**

Venue and Conference Dinner

Great – proven Concept

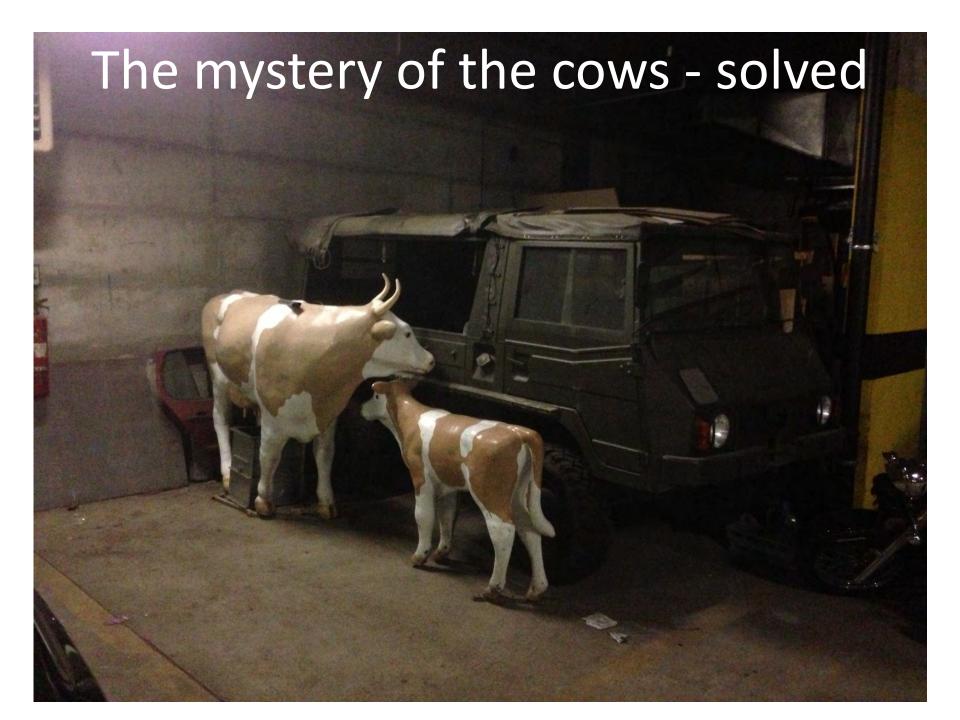
Thanks

Edward Byrne
Philippe Fischer
Suzanne Schwendener
Sikha Ray
VS



The Micro, Nano, and Emerging Technologies Commercialization and Educational Foundation (MANCEF)

2012: Scenic view in the Swiss Alps


Ron Lawes

Great venue

Organizers

Media Partners

Exhibitors

MICROTECHNICS Alliages

COMS October 12 - 14 2014 Salt Lake City, Utah

Presented by MANCEF and the University of Utah Center for Engineering Innovation at the Grand America Hotel, Salt Lake City, COMS 2014 is the 19th edition of the international conference on commercializing Micro- and nanotechnology.

Why attend COMS? COMS focuses primarily on entrepreneurship and marketable solutions, not just science and technology. It is a hands on, practical meeting to assist you in bringing your products to market, finding new customers, or the perfect development partner.

COMS will provide you with the latest information on technology transfer, manufacturing processes, facilities, infrastructure, investment, applications, and markets, as well as covering regulatory issues, social implications, education and workforce development. Meet with decision makers and qualified buyers from every sector in an atmosphere designed for business development.

SEE YOU AT MAM 2015